
Page 1

Rosie Clearpath

An Entry from Rose-Hulman Institute of Technology in the

2013 Intelligent Ground Vehicle Competition

(IGVC 2013)

Derek Heeger, Chad Jones, Dongyang Li, Chenqi Cao, Tayler Burns, Rain

Dartt, Tayler Berns, Aaron Golliver

Faculty Advisor:

David Mutchler, Professor of Computer Science and Software Engineering

Faculty statement: I hereby certify that the design and development of the robot discussed in this

technical report has involved significant contributions by the aforementioned team members,

consistent with the effort required in a Senior Design course.

David Mutchler, Professor of Computer Science and Software Engineering

Page 2

Table of Contents

Table of Contents .. 2

1 Team Overview .. 3

2 Design Process ... 3

3 Hardware ... 4

3.1 The Husky Robot from Clearpath Robotics ... 4

3.2 Hardware We Added to the Basic Husky Robot .. 4

3.3 Kill Switch ... 5

3.4 Costs of Equipment .. 5

4 Software... 5

4.1 Platform – Robot Operating System (ROS) ... 6

4.2 Vision for white line detection .. 7

4.3 Vision for detecting barrels... 8

4.4 Image Location and Object Location Transformation.. 9

4.5 LIDAR ... 9

4.6 GPS ... 9

4.7 IMU ... 9

4.8 Extended Kalman Filter .. 10

4.9 GMAPPING... 10

4.10 Navigation ... 10

5 Conclusion ... 12

6 References ... 13

Note: The outline of this report was taken from the Princeton entry in the 2008 IGVC [1]. We

are grateful for their example of an award-winning design report.

Page 3

1 Team Overview

The Husky Rose team is organized via a new course offered this year at Rose-Hulman:

CSSE 290 Software Challenges in Autonomous Vehicle Navigation. Twenty-five students took

the course over 3 terms, for a total of student 50 credit-hours over the year. Eight students are in

the course for the spring term and authored this report.

2 Design Process

In the fall term, we decided which hardware, software, and sensors we were going to use. We

knew that we wanted to use the Robot Operating System (ROS) [2] platform developed by

Willow Garage [3]. We chose our robot frame, a Husky A200 [4] that we bought from Clearpath

Robotics [5]. We also concluded on using a Lidar, a Logitech camera, an IMU from Yost

Engineering Inc, and a GPS from GlobalsSat.

In this problem-based course, students design and develop software to solve

challenges in navigation faced by autonomous vehicles (robots). The problems are

real problems faced by real robots in a real competition. The software to be

developed is for challenges faced by a robot that will be entered in the 2012 Ground

Vehicles Competition (IGVC), although the software will be designed to apply to other

robots as well. Challenges include location, vision, planning and control:

• Where am I, and where will I be in X seconds?

• What obstacles are ahead of me?

• What sensors should I use to learn the above? How do I deal with uncertain and

conflicting information?

• How will I avoid the obstacles ahead of me? Where do I want to go next?

• At each step, what speed should I be driving, to accomplish my overall goal of

winning the competition? What sub-goals should I set to accomplish that overall

goal?

• What commands do I give to motors to accomplish what I want to do next?

• What information do I need from sensors to accomplish what I want to do next?

Figure 1. A portion of the course description of CSSE 290 Software Challenges in

Autonomous Vehicle Navigation, Rose-Hulman Institute of Technology.

Page 4

In the spring term, we used a

simplified version of the Agile [6]

software development process called

Scrum [7] in which we set out

deliverables due each week and re-

planned each week based on what we

did (and did not) accomplish. The

diagram to the right summarizes the

Scrum development process.

3 Hardware

3.1 The Husky Robot from Clearpath Robotics

Our team wanted to focus on software challenges, per the course driving the team. For that

reason, we bought a Husky A200 robot from Clearpath Robotics that provided a very strong,

solid base – but only the base: wheels, motors, chassis, battery etc. No sensors and no brain.

• Dimensions: About 3 feet long, 2 feet wide, 15 inches tall, with a 5 inch clearance. It

weighs about 100 pounds.

• Speed: It runs in rugged terrain (snow, etc) quite nicely, with a max speed of about 2.3

mph. It turns in a tight radius with a wheel base of about 2 feet.

• Power: Battery powered. It runs for several hours on a charge.

More details of the robot are at http://www.clearpathrobotics.com/husky.

3.2 Hardware We Added to the Basic Husky Robot

• A mounting system made from 80/20 aluminum t-slotted tube framing [8].

• One cameras (mounted front and sides): Logitech HD Pro Webcam C920 [9].

• LIDAR: A used LIDAR loaned to use from an alumni.

• GPS: A BU-353-S4 Weather-proof USB GPS Receiver by GlobalSat [10].

• Computer: HP/Compaq Tablet computer, model TC 4400 (several years old).

Figure 2. The Scrum development process [15]

Page 5

• Inertial Measurement Unit (IMU)

• Safety system as required for IGVC.

3.3 Kill Switch

A 12V line from the Husky will always power a solid light on when the Husky is on. The

button device mounted on the Husky will connect a 5V source from the Husky to a Spektrum

AR6210 6-CHANNEL DSMX Receiver SPMAR6210 and also run a parallel line from the 12V

source to the relay. A DoubleSwitch Radio Controlled Dual 8A Relay connected to the receiver

connects the 12V to the channel on the LED that toggles flashing for autonomous mode and also

splices the serial cord connecting the laptop to the Husky. When the Killswitch button is in the

‘off’ position, the receiver defaults to open its circuits; if the receiver is defaulted or triggered to

open the circuits, the heartbeat signal from the laptop is disrupted, and the Husky stops moving

while the LED returns to solid mode instead of flashing. A diagram of the circuit is shown

below.

3.4 Costs of Equipment

Item Retail cost Cost to team

Husky A200 robot, with 1 extra battery (shipped, with tax) $ 14,700 $ 7,600

Camera – Logitech HD Pro Webcam C920 $ 80 $ 80

LIDAR – SICK LMS291-S14 $ 5,000 $ 0

GPS – BU-354-S4 Weather-proof USB GPS Receiver. $ 60 $ 60

Computer (HP/Compaq Tablet computer, model TC 4400) $ 2,500 $ 0

Mounting hardware $ 500 $ 100

Safety system (light, remote control, etc) $ 800 $ 400

TOTAL $ 23,640 $ 8,240

4 Software

This section describes the software we developed for our robot. Our development is still in

progress – we will give a more complete report at the oral presentation at the contest.

Page 6

4.1 Platform – Robot Operating System (ROS)

The software platform chosen for use on our robot is Robot Operating System (ROS) [2], an

open source software framework for use with robotics. It is a mostly self-contained system,

which according to the ROS Wiki, provides “the services you would expect from an operating

system, including hardware abstraction, low-level device control, implementation of commonly-

used functionality, message-passing between processes, and package management. [2]” More

simply put, it is similar to an operating system (although it has to run on a host OS; Ubuntu

Linux is the only one officially supported), and uses a message-passing graph architecture to

facilitate communication between various inputs, processing nodes, and outputs.

A more detailed overview of ROS is as follows (most of this is summarized from the ROS

concepts page [11] located on the ROS Wiki): ROS has three layers of concepts and

functionality: Filesystem Level, ROS Graph, and Community.

The most important parts of the Filesystem Level are Packages and Stacks. Packages are

large units that may contain ROS nodes, ROS libraries, ROS configuration, or anything else that

needs to go together. Stacks are collections of related packages. An example would be the

Clearpath Husky stack; it contains packages for Husky initialization, Husky remote

teleoperation, and Husky simulation.

The Graph Level of ROS is where most of the work is done. The graph level consists of

nodes: modular processes that, like Unix processes (and that similarly adhere to the philosophy

“do one thing, and do it well”), typically do one specific task (control GPS, transform coordinate

frames, control LIDAR, etc). Nodes communicate to each other by sending messages to each

other over a routing system that utilizes named

topics. Nodes can either publish messages to a

specific topic or subscribe to a topic, receiving (and

handling) any messages that are published to it.

Nodes may publish and subscribe to several

different topics. There are also services, which

allow for synchronous communication

(request/reply), but these are used relatively infrequently. “Bags” are another useful part of the

Graph Level of ROS. They are a format for saving and replaying ROS message data, allowing

one to work on algorithms without having to collect new data each time.

Figure 3. The ROS message-passing structure

(from [11])

Page 7

The third level of ROS is the Community level, which consists of the online distributions and

repositories of ROS. Our Husky robot is currently running the 4th version of ROS, Electric

Emys.

We chose ROS due to the large amount of available software for it, the large amount of

compatibility, and its ease of development, due to being open-source. Our

production/deployment system is running on Ubuntu 11.10, and our development systems are all

running either Ubuntu 11.10 or Ubuntu 12.04. ROS supports code written in Python and in C++.

Most of our high-level code is currently written in Python, with calls to libraries implemented in

C++.

4.2 Vision for white line detection

The detection algorithm for extracting the coordinates of white lines is simple but works

well. It uses the open source vision library OpenCV, which is well-supported by ROS and has a

powerful library that contains a variety of classical and most efficient algorithms for image

processing. To access these positions of the pixels that represent white lines, an easy way is to

transform the image to whiten the pixels on white lines at the same time black anything else. The

transformation of a colored image to black and white is performed on a gray scaled image with

some threshold constant. However, the threshold to transform the gray image is hard to fix,

because the gray level of the white lines are always similar to its background. Therefore we

converted the RGB image to HSV image, and split it into Hue, Saturation and Volume layer.

Among these three layers, the Saturation layer is the most important to us.

 Saturation layers represent each pixel’s saturation with an integer value within 0 to 255;

therefore the saturation layer can be converted into a binary image directly. The threshold should

vary from different images that are taken under varying external illumination, which poses a

challenging obstacle. At first we arbitrarily chose a value as our threshold. Later, to make our

algorithm more robust to different images of different daylight intensities, we implemented an

adaptive algorithm to determine the threshold constant by using the histogram of the image. In

the saturation image we easily noticed that the white line part now becomes the blackest part,

whose pixels have the lowest value among 0 to 255. And these pixels actually compose only a

small percentage of the whole image. Based on this priori knowledge, we decided to choose the

value at which the histogram has a largest derivative as our threshold. We compared these

adaptive thresholds with our former experimental threshold constants on different images. We

Page 8

found that we need to minimize the adaptive threshold at some percentage (i.e. 30% or more)

thus we have these two similar values.

After the correct threshold was chosen, there was one final step, and that was to remove the

speckled points that were not part of the line. The median blur algorithm was used and

effectively removed all the speckles.

 In order to effectively find lines on the image, the Hough Transform was implemented to

find the straight lines on the image effectively. It’s a method that finds straight lines of some

length within a pre-set range in an image. The value returned by the Hough Method is an array of

lines defined by two points on the original image. The images below show the line recognition

code finding a white line.

4.3 Vision for detecting barrels

So far all the barrels we have seen in photos from IGVC are orange. Therefore we decided to

take color segmentation into consideration as the orange color is unique in the whole photo. We

first resize the image, then convert the resized RGB image into HSV color space. We then use

cv2.inRange to convert the image to a black and white image. The white lines of the image are

the orange parts of the barrels. Median blur was also used to remove the noises left in the

background. The Canny method is then called to outline

the barrel out as follows. This is all prepared for the Hough

Line method to recognize a line that describes the bottom

position of the barrel in the picture. The lowest horizontal

line is a different color from all the other lines in order to

mark it as the bottom of the barrel for later coordinate

transformation use. The image shows the barrel code

Figure 4 shows the line code finding a line.

Figure 5 shows the barrel recognition code working.

Page 9

finding the edges of the barrel.

4.4 Image Location and Object Location Transformation

The image location to object space transformation was based on trigonometry that

calculated the distance relative to the base of the object’s location on the screen. By breaking

down the location of the object into two right triangles, we were able to convert the pixel

location to an angle, and then add that angle to the base angles that were relative to the camera.

With these calculated angles, and the given height measurement, the formulas and code

calculates the distance of the object using the camera within an acceptable tolerance. The

tolerance is less at a certain distance away from the camera. We suspect this is because of the

optics within the camera itself, not due to the formula or algorithms used to find the distance.

The distance is most accurate at about 8-10 feet away from the camera.

4.5 LIDAR

There was a ROS driver for the LIDAR. It would publish the LIDAR data as a topic in ROS

as a function of distance and an angle. We then created a transform to turn the location of the

object that we found to a real location in space.

4.6 GPS

We have written code that takes in GPS data. It then publishes the data to the GPS topic. We

tested the GPS and found it reports consistent data within 1 meter but the actual error can vary up

to 3 meters.

4.7 IMU

In order to measure and record inertial measurement unit (IMU) data, we used Yost Engineering,

Inc.'s 3-Space Sensor which measures accelerometer, compass, and gyroscopic data. The device

is used by making a USB serial port connection and sending packs of command bytes to the

device then reading the requested data sent back from the device. Python scripts were used to

continually request and read data from the IMU sensor, correctly transform the data and publish

it to the “imu/data” ROS topic, which was passed into the Kaulman Filter. With this transformed

data from the IMU, the robot can determine where it's current location is as well as its current

orientation.

Page 10

4.8 Extended Kalman Filter

ROS has a built in extended Kalman Filter which inputs the data from the GPS, IMU and

Encoders. It uses probability to smoothly incorporate all the sensor data which helps the robot

know its exact location in space.

4.9 Gmapping

Gmapping is the combination of all the sensor and odometry data into one file so that the

robot can create a picture of the world around it. When Gmapping is accomplished, the robot can

easily use premade navigation stacks to go where it needs to. The image below shows the

summary of what is necessary for Gmapping to work.

Figure 6 shows the steps required for successful Gmapping.

4.10 Navigation

For navigation functionality, the ROS Navigation Stack is used. It contains a variety of

components that work together with other nodes as part of a larger system. The simplest

explanation of it is that it

takes sensor data and

localization data, then

signals the robot's control

rfaces to take it to a given

destination.

A more complex Figure 7 shows how the Navigation stack works.

Page 11

explanation of the ROS Navigation stack is as follows: The navigation stack is a series of nodes

that work together to give the robot navigation functionality. The internals of the navigation

stack consist of a global costmap, a local costmap, a global planner, a local planner, and a

recovery behaviors node.

Costmaps are the primary way by the robot knows where it can and cannot go, and what

paths are best to take. They are built by taking in sensor data (whether from a laser scan [usually

output by LIDAR] or point cloud) and using this to produce an occupancy grid (a 2D or 3D grid

of places the robot can and cannot go). The “cost” part of the costmap is that each grid space has

a “cost” associated with it. The robot avoids spaces with high cost (corresponding to high

probability of collision), and prefers to go through spaces with low cost (corresponding to low or

no probability of collision). These are calculated by

giving the robot an “inscribed radius” (corresponding

to a circle drawn inside the robot's body) and a

“circumscribed radius” (corresponding to a circle

drawn outside the robot's body). Obstacles that would

fall within the robot's inscribed radius have a very

high cost, while obstacles that fall within the robot's

circumscribed radius have a slightly lower cost, and

obstacles that fall within neither have practically no

cost. The use of costmaps allows the ROS navigation

stack to deal with many types of obstacles in an

elegant manner.

The second part of the navigation stack is the

planner node. These use the costmap to attempt to

find the “cheapest” route from the robot to a specified goal. After such a route is found, it sends

differential and angular velocities to the robot. The algorithm used by the planner node is as

follows (quoted from [14]):

1. Discretely sample in the robot's control space (dx, dy, dtheta)

2. For each sampled velocity, perform forward simulation from the robot's current state to

predict what would happen if the sampled velocity were applied for some (short) period of

time.

Figure 8. A Costmap Visualization

Page 12

3. Evaluate (score) each trajectory resulting from the forward simulation, using a metric that

incorporates characteristics such as: proximity to obstacles, proximity to the goal, proximity

to the global path, and speed. Discard illegal trajectories (those that collide with obstacles).

4. Pick the highest-scoring trajectory and send the associated velocity to the mobile base.

5. Rinse and repeat.

Finally, the recovery node rotates the robot 360 degrees when the robot appears to be “stuck”.

To make the navigation stack functional, a few things are required: sensor inputs, robot

controller output, odometry inputs, and a map server (for sharing the map with other nodes, as

well as saving it to the disk). At this point, the navigation stack simply needs to receive a “goal

message”, specifying a desired destination location. To do this, given GPS information, a

“gps_common” node is used, which converts the spherical projection of GPS coordinates into

UTM coordinates, which are rectangular coordinates that the navigation stack can understand.

When all of this data is fed into the navigation stack, the robot can navigate from waypoint to

waypoint while avoiding obstacles and automatically adjusting its speed. The challenge inherent

in this is combining the sensor data and tuning the navigation stack's settings to give a balance of

processing speed and accuracy (by adjusting the grid size of the costmap, making it 2D vs 3D,

etc), as well as adjusting the acceleration, speed, and radius parameters of the robot to allow it to

go from point to point as quickly as possible while not coming into contact with any obstacles.

5 Conclusion

This is our first year in IGVC. We are still implementing ideas. We will update this report at

the oral presentation at IGVC. We think that these will prove to be winning design decisions:

• Buying the Husky A200 as our robot base. This allows us to focus on our interests –

software and sensors – instead of grappling with mechanical issues.

• Using ROS as our platform. The learning curve is steep, but we believe that ROS will let

us focus on applying known algorithms in novel ways, instead of re-inventing the wheel.

• Our vision algorithms for line and barrel detection

• Our use of an IMU, GPS, LIDAR and Camera

Page 13

6 References

[1] "IGVC Design Reports, 2008, Princeton University," 2008. [Online]. Available:

http://www.igvc.org/design/reports/dr218.pdf. [Accessed 8 May 2012].

[2] "Robot Operating System (ROS)," [Online]. Available: http://www.ros.org/wiki/. [Accessed 8 May

2012].

[3] W. Garage, "Willow Garage home page," [Online]. Available: http://www.willowgarage.com/.

[Accessed 8 May 2012].

[4] "Husky A200 Unmanned Ground Vehicle," [Online]. Available:

http://www.clearpathrobotics.com/husky. [Accessed 8 May 2012].

[5] "Clearpath Robotics," [Online]. Available: http://www.clearpathrobotics.com. [Accessed 8 May

2012].

[6] "Agile Software Development Processes," [Online]. Available: http://www.agile-process.org/.

[Accessed 8 May 2012].

[7] K. Schwaber and M. Beedle, Agile Software Development with Scrum, Prentice-Hall, 2001.

[8] "80/20 T-Slotted Aluminum Tube Framing," [Online]. Available: http://www.8020.net/T-Slot-1.asp.

[Accessed 8 May 2012].

[9] "Logitech HD Pro Webcam C920," [Online]. Available: http://www.logitech.com/en-us/webcam-

communications/webcams/devices/hd-pro-webcam-c920. [Accessed 8 May 2012].

[10] "BU-353-S4 Weather-proof USB CPS Receiver by GlobalSat," [Online]. Available:

http://www.usglobalsat.com/p-688-bu-353-s4.aspx#images/product/large/688.jpg.

[11] "ROS Concepts Page," [Online]. Available: http://www.ros.org/wiki/ROS/Concepts. [Accessed 8

May 2012].

[12] "Open CV Vision Library, Wiki," [Online]. Available: http://opencv.willowgarage.com/wiki/.

[Accessed 8 May 2012].

[13] "Histogram of Oriented Gradients (HOG)," [Online]. Available:

http://en.wikipedia.org/wiki/Histogram_of_oriented_gradients. [Accessed 8 May 2012].

[14] "ROS Dynamic Window Approach (DWA) Planner," [Online]. Available:

http://www.ros.org/wiki/dwa_local_planner.

Page 14

[15] "Scrum Services from Icon ATG: diagram adapted from "Agile Software Development with Scrum"

by Schwaber and Beedle," [Online]. Available: http://www.iconatg.com/services/process/scrum.php.

[Accessed 8 May 2012].

