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1 Team Overview 

The Husky Rose team is organized via a new course offered this year at Rose-Hulman:  

CSSE 290 Software Challenges in Autonomous Vehicle Navigation.  Twenty-five students took 

the course over 3 terms, for a total of student 50 credit-hours over the year.  Eight students are in 

the course for the spring term and authored this report. 

2 Design Process 

In the fall term, we decided which hardware, software, and sensors we were going to use. We 

knew that we wanted to use the Robot Operating System (ROS) [2] platform developed by 

Willow Garage [3]. We chose our robot frame, a Husky A200 [4] that we bought from Clearpath 

Robotics [5].  We also concluded on using a Lidar, a Logitech camera, an IMU from Yost 

Engineering Inc, and a GPS from GlobalsSat.  

In this problem-based course, students design and develop software to solve 

challenges in navigation faced by autonomous vehicles (robots).  The problems are 

real problems faced by real robots in a real competition.  The software to be 

developed is for challenges faced by a robot that will be entered in the 2012 Ground 

Vehicles Competition (IGVC), although the software will be designed to apply to other 

robots as well.  Challenges include location, vision, planning and control: 

• Where am I, and where will I be in X seconds? 

• What obstacles are ahead of me? 

• What sensors should I use to learn the above?  How do I deal with uncertain and 

conflicting information? 

• How will I avoid the obstacles ahead of me?  Where do I want to go next? 

• At each step, what speed should I be driving, to accomplish my overall goal of 

winning the competition?  What sub-goals should I set to accomplish that overall 

goal? 

• What commands do I give to motors to accomplish what I want to do next? 

• What information do I need from sensors to accomplish what I want to do next? 

Figure 1.  A portion of the course description of CSSE 290 Software Challenges in 

Autonomous Vehicle Navigation, Rose-Hulman Institute of Technology. 
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In the spring term, we used a 

simplified version of the Agile [6] 

software development process called 

Scrum [7] in which we set out 

deliverables due each week and re-

planned each week based on what we 

did (and did not) accomplish.  The 

diagram to the right summarizes the 

Scrum development process. 

3 Hardware 

3.1 The Husky Robot from Clearpath Robotics 

Our team wanted to focus on software challenges, per the course driving the team.  For that 

reason, we bought a Husky A200 robot from Clearpath Robotics that provided a very strong, 

solid base – but only the base: wheels, motors, chassis, battery etc.  No sensors and no brain. 

• Dimensions:  About 3 feet long, 2 feet wide, 15 inches tall, with a 5 inch clearance.  It 

weighs about 100 pounds. 

• Speed:  It runs in rugged terrain (snow, etc) quite nicely, with a max speed of about 2.3 

mph.  It turns in a tight radius with a wheel base of about 2 feet. 

• Power:  Battery powered.  It runs for several hours on a charge. 

More details of the robot are at http://www.clearpathrobotics.com/husky. 

3.2 Hardware We Added to the Basic Husky Robot 

• A mounting system made from 80/20 aluminum t-slotted tube framing [8]. 

• One cameras (mounted front and sides): Logitech HD Pro Webcam C920 [9]. 

• LIDAR:   A used LIDAR loaned to use from an alumni. 

• GPS:  A BU-353-S4 Weather-proof USB GPS Receiver by GlobalSat [10]. 

• Computer:  HP/Compaq Tablet computer, model TC 4400 (several years old). 

Figure 2.  The Scrum development process [15] 
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• Inertial Measurement Unit (IMU) 

• Safety system as required for IGVC. 

3.3 Kill Switch 

A 12V line from the Husky will always power a solid light on when the Husky is on. The 

button device mounted on the Husky will connect a 5V source from the Husky to a Spektrum 

AR6210 6-CHANNEL DSMX Receiver SPMAR6210 and also run a parallel line from the 12V 

source to the relay. A DoubleSwitch Radio Controlled Dual 8A Relay connected to the receiver 

connects the 12V to the channel on the LED that toggles flashing for autonomous mode and also 

splices the serial cord connecting the laptop to the Husky. When the Killswitch button is in the 

‘off’ position, the receiver defaults to open its circuits; if the receiver is defaulted or triggered to 

open the circuits, the heartbeat signal from the laptop is disrupted, and the Husky stops moving 

while the LED returns to solid mode instead of flashing. A diagram of the circuit is shown 

below. 

3.4 Costs of Equipment 

Item Retail cost Cost to team 

Husky A200 robot, with 1 extra battery (shipped, with tax) $ 14,700 $  7,600 

Camera – Logitech HD Pro Webcam C920  $    80 $    80 

LIDAR – SICK LMS291-S14 $  5,000 $      0 

GPS – BU-354-S4 Weather-proof USB GPS Receiver. $     60 $     60 

Computer (HP/Compaq Tablet computer, model TC 4400) $  2,500        $      0 

Mounting hardware $    500 $    100 

Safety system (light, remote control, etc) $    800 $    400 

TOTAL $ 23,640 $ 8,240 

4 Software 

This section describes the software we developed for our robot.  Our development is still in 

progress – we will give a more complete report at the oral presentation at the contest. 
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4.1 Platform – Robot Operating System (ROS) 

The software platform chosen for use on our robot is Robot Operating System (ROS) [2], an 

open source software framework for use with robotics.  It is a mostly self-contained system, 

which according to the ROS Wiki, provides “the services you would expect from an operating 

system, including hardware abstraction, low-level device control, implementation of commonly-

used functionality, message-passing between processes, and package management. [2]”  More 

simply put, it is similar to an operating system (although it has to run on a host OS; Ubuntu 

Linux is the only one officially supported), and uses a message-passing graph architecture to 

facilitate communication between various inputs, processing nodes, and outputs. 

A more detailed overview of ROS is as follows (most of this is summarized from the ROS 

concepts page [11] located on the ROS Wiki):  ROS has three layers of concepts and 

functionality: Filesystem Level, ROS Graph, and Community. 

The most important parts of the Filesystem Level are Packages and Stacks.  Packages are 

large units that may contain ROS nodes, ROS libraries, ROS configuration, or anything else that 

needs to go together.  Stacks are collections of related packages. An example would be the 

Clearpath Husky stack; it contains packages for Husky initialization, Husky remote 

teleoperation, and Husky simulation. 

The Graph Level of ROS is where most of the work is done. The graph level consists of 

nodes: modular processes that, like Unix processes (and that similarly adhere to the philosophy 

“do one thing, and do it well”), typically do one specific task (control GPS, transform coordinate 

frames, control LIDAR, etc).  Nodes communicate to each other by sending messages to each 

other over a routing system that utilizes named 

topics.  Nodes can either publish messages to a 

specific topic or subscribe to a topic, receiving (and 

handling) any messages that are published to it.  

Nodes may publish and subscribe to several 

different topics.  There are also services, which 

allow for synchronous communication 

(request/reply), but these are used relatively infrequently.  “Bags” are another useful part of the 

Graph Level of ROS.  They are a format for saving and replaying ROS message data, allowing 

one to work on algorithms without having to collect new data each time. 

Figure 3.  The ROS message-passing structure 

(from [11]) 
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The third level of ROS is the Community level, which consists of the online distributions and 

repositories of ROS.  Our Husky robot is currently running the 4th version of ROS, Electric 

Emys. 

We chose ROS due to the large amount of available software for it, the large amount of 

compatibility, and its ease of development, due to being open-source.  Our 

production/deployment system is running on Ubuntu 11.10, and our development systems are all 

running either Ubuntu 11.10 or Ubuntu 12.04.  ROS supports code written in Python and in C++.  

Most of our high-level code is currently written in Python, with calls to libraries implemented in 

C++. 

4.2 Vision for white line detection 

The detection algorithm for extracting the coordinates of white lines is simple but works 

well. It uses the open source vision library OpenCV, which is well-supported by ROS and has a 

powerful library that contains a variety of classical and most efficient algorithms for image 

processing. To access these positions of the pixels that represent white lines, an easy way is to 

transform the image to whiten the pixels on white lines at the same time black anything else. The 

transformation of a colored image to black and white is performed on a gray scaled image with 

some threshold constant. However, the threshold to transform the gray image is hard to fix, 

because the gray level of the white lines are always similar to its background.  Therefore we 

converted the RGB image to HSV image, and split it into Hue, Saturation and Volume layer. 

Among these three layers, the Saturation layer is the most important to us.  

 Saturation layers represent each pixel’s saturation with an integer value within 0 to 255; 

therefore the saturation layer can be converted into a binary image directly. The threshold should 

vary from different images that are taken under varying external illumination, which poses a 

challenging obstacle. At first we arbitrarily chose a value as our threshold. Later, to make our 

algorithm more robust to different images of different daylight intensities, we implemented an 

adaptive algorithm to determine the threshold constant by using the histogram of the image. In 

the saturation image we easily noticed that the white line part now becomes the blackest part, 

whose pixels have the lowest value among 0 to 255. And these pixels actually compose only a 

small percentage of the whole image. Based on this priori knowledge, we decided to choose the 

value at which the histogram has a largest derivative as our threshold. We compared these 

adaptive thresholds with our former experimental threshold constants on different images.  We 
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found that we need to minimize the adaptive threshold at some percentage (i.e. 30% or more) 

thus we have these two similar values.  

After the correct threshold was chosen, there was one final step, and that was to remove the 

speckled points that were not part of the line. The median blur algorithm was used and 

effectively removed all the speckles. 

 In order to effectively find lines on the image, the Hough Transform was implemented to 

find the straight lines on the image effectively. It’s a method that finds straight lines of some 

length within a pre-set range in an image. The value returned by the Hough Method is an array of 

lines defined by two points on the original image. The images below show the line recognition 

code finding a white line.  

 

 

 

 

  

4.3 Vision for detecting barrels 

So far all the barrels we have seen in photos from IGVC are orange. Therefore we decided to 

take color segmentation into consideration as the orange color is unique in the whole photo. We 

first resize the image, then convert the resized RGB image into HSV color space. We then use 

cv2.inRange to convert the image to a black and white image. The white lines of the image are 

the orange parts of the barrels. Median blur was also used to remove the noises left in the 

background. The Canny method is then called to outline 

the barrel out as follows. This is all prepared for the Hough 

Line method to recognize a line that describes the bottom 

position of the barrel in the picture. The lowest horizontal 

line is a different color from all the other lines in order to 

mark it as the bottom of the barrel for later coordinate 

transformation use. The image shows the barrel code 

Figure 4 shows the line code finding a line. 

Figure 5 shows the barrel recognition code working. 
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finding the edges of the barrel.  

4.4 Image Location and Object Location Transformation 

The image location to object space transformation was based on trigonometry that 

calculated the distance relative to the base of the object’s location on the screen. By breaking 

down the location of the object into two right triangles, we were able to convert the pixel 

location to an angle, and then add that angle to the base angles that were relative to the camera. 

With these calculated angles, and the given height measurement, the formulas and code 

calculates the distance of the object using the camera within an acceptable tolerance. The 

tolerance is less at a certain distance away from the camera. We suspect this is because of the 

optics within the camera itself, not due to the formula or algorithms used to find the distance. 

The distance is most accurate at about 8-10 feet away from the camera. 

4.5 LIDAR  

There was a ROS driver for the LIDAR. It would publish the LIDAR data as a topic in ROS 

as a function of distance and an angle. We then created a transform to turn the location of the 

object that we found to a real location in space.  

4.6 GPS 

We have written code that takes in GPS data. It then publishes the data to the GPS topic. We 

tested the GPS and found it reports consistent data within 1 meter but the actual error can vary up 

to 3 meters.    

4.7 IMU 

In order to measure and record inertial measurement unit (IMU) data, we used Yost Engineering, 

Inc.'s 3-Space Sensor which measures accelerometer, compass, and gyroscopic data. The device 

is used by making a USB serial port connection and sending packs of command bytes to the 

device then reading the requested data sent back from the device. Python scripts were used to 

continually request and read data from the IMU sensor, correctly transform the data and publish 

it to the “imu/data” ROS topic, which was passed into the Kaulman Filter. With this transformed 

data from the IMU, the robot can determine where it's current location is as well as its current 

orientation. 
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4.8 Extended Kalman Filter 

ROS has a built in extended Kalman Filter which inputs the data from the GPS, IMU and 

Encoders. It uses probability to smoothly incorporate all the sensor data which helps the robot 

know its exact location in space.  

4.9 Gmapping 

Gmapping is the combination of all the sensor and odometry data into one file so that the 

robot can create a picture of the world around it. When Gmapping is accomplished, the robot can 

easily use premade navigation stacks to go where it needs to. The image below shows the 

summary of what is necessary for Gmapping to work. 

 

Figure 6 shows the steps required for successful Gmapping. 

4.10 Navigation 

For navigation functionality, the ROS Navigation Stack is used.  It contains a variety of 

components that work together with other nodes as part of a larger system. The simplest 

explanation of it is that it 

takes sensor data and 

localization data, then 

signals the robot's control 

rfaces to take it to a given 

destination.  

A more complex Figure 7 shows how the Navigation stack works. 
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explanation of the ROS Navigation stack is as follows: The navigation stack is a series of nodes 

that work together to give the robot navigation functionality. The internals of the navigation 

stack consist of a global costmap, a local costmap, a global planner, a local planner, and a 

recovery behaviors node. 

Costmaps are the primary way by the robot knows where it can and cannot go, and what 

paths are best to take. They are built by taking in sensor data (whether from a laser scan [usually 

output by LIDAR] or point cloud) and using this to produce an occupancy grid (a 2D or 3D grid 

of places the robot can and cannot go). The “cost” part of the costmap is that each grid space has 

a “cost” associated with it. The robot avoids spaces with high cost (corresponding to high 

probability of collision), and prefers to go through spaces with low cost (corresponding to low or 

no probability of collision). These are calculated by 

giving the robot an “inscribed radius” (corresponding 

to a circle drawn inside the robot's body) and a 

“circumscribed radius” (corresponding to a circle 

drawn outside the robot's body). Obstacles that would 

fall within the robot's inscribed radius have a very 

high cost, while obstacles that fall within the robot's 

circumscribed radius have a slightly lower cost, and 

obstacles that fall within neither have practically no 

cost. The use of costmaps allows the ROS navigation 

stack to deal with many types of obstacles in an 

elegant manner. 

The second part of the navigation stack is the 

planner node. These use the costmap to attempt to 

find the “cheapest” route from the robot to a specified goal. After such a route is found, it sends 

differential and angular velocities to the robot. The algorithm used by the planner node is as 

follows (quoted from [14]): 

1. Discretely sample in the robot's control space (dx, dy, dtheta) 

2. For each sampled velocity, perform forward simulation from the robot's current state to 

predict what would happen if the sampled velocity were applied for some (short) period of 

time.  

Figure 8.  A Costmap Visualization 
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3. Evaluate (score) each trajectory resulting from the forward simulation, using a metric that 

incorporates characteristics such as: proximity to obstacles, proximity to the goal, proximity 

to the global path, and speed. Discard illegal trajectories (those that collide with obstacles).  

4. Pick the highest-scoring trajectory and send the associated velocity to the mobile base.  

5. Rinse and repeat.  

Finally, the recovery node rotates the robot 360 degrees when the robot appears to be “stuck”. 

To make the navigation stack functional, a few things are required: sensor inputs, robot 

controller output, odometry inputs, and a map server (for sharing the map with other nodes, as 

well as saving it to the disk). At this point, the navigation stack simply needs to receive a “goal 

message”, specifying a desired destination location. To do this, given GPS information, a 

“gps_common” node is used, which converts the spherical projection of GPS coordinates into 

UTM coordinates, which are rectangular coordinates that the navigation stack can understand. 

When all of this data is fed into the navigation stack, the robot can navigate from waypoint to 

waypoint while avoiding obstacles and automatically adjusting its speed. The challenge inherent 

in this is combining the sensor data and tuning the navigation stack's settings to give a balance of 

processing speed and accuracy (by adjusting the grid size of the costmap, making it 2D vs 3D, 

etc), as well as adjusting the acceleration, speed, and radius parameters of the robot to allow it to 

go from point to point as quickly as possible while not coming into contact with any obstacles. 

5 Conclusion 

This is our first year in IGVC.  We are still implementing ideas.  We will update this report at 

the oral presentation at IGVC.  We think that these will prove to be winning design decisions: 

• Buying the Husky A200 as our robot base.  This allows us to focus on our interests – 

software and sensors – instead of grappling with mechanical issues. 

• Using ROS as our platform.  The learning curve is steep, but we believe that ROS will let 

us focus on applying known algorithms in novel ways, instead of re-inventing the wheel. 

• Our vision algorithms for line and barrel detection 

• Our use of an IMU, GPS, LIDAR and Camera 
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